jeudi 18 novembre 2010

MIRACLE DES PLANTES 3

Les pollens qui ouvrent leurs voiles au vent
Plusieurs plantes dans le monde utilisent le vent pour disséminer leur pollen pour la continuité de l'espèce. Les plantes comme le chêne, le saule, le peuplier, les pins, les herbes, le blé etc. sont pollinisées par le vent qui prend les particules minuscules sur les plantes, les transportent vers d'autres plantes de la même espèce, et ainsi assure la fertilisation.

Les palmiers splendides font partie de ces plantes fertilisées par le vent.
Il y a beaucoup de points que les scientifiques n’ont pu expliquer, et des questions sans réponses au sujet de la pollinisation par le vent. Par exemple, comment chacune des centaines de variétés de pollen portées par le vent reconnaissent les plantes de leur propre espèce ? Comment est-ce que le pollen atteint les organes femelles de la plante sans rester collé ailleurs ? Bien que les probabilités de fertilisation sont assez faibles, comment se fait-il que des centaines de plantes soient fertilisées de cette manière, et ce, depuis des millions d'années ?



Pour apporter des réponses à ces questions, Karl J. Niklas de l'Université Cornell, et son équipe, ont étudié les plantes qui utilisent la pollinisation par le vent. Leurs résultats sont extrêmement surprenants. Niklas et son équipe ont découvert que ces plantes ont des fleurs qui possèdent une structure aérodynamique leur permettant d'attraper de grandes quantités de pollen dans l'air.
Quelle est cette structure aérodynamique ? Quel effet a-t-elle ? Pour fournir des réponses à ces questions, nous devons d'abord expliquer ce que signifie "structure aérodynamique". Les forces qui naissent dans les courants d'air agissent sur les corps bougeant dans l'air. Grâce à ces forces connues comme forces aérodynamiques, les corps qui réussissent à se déplacer dans l'air sont connus comme des "corps structurellement aérodynamiques". Certaines plantes qui utilisent la pollinisation par le vent utilisent cette structure aérodynamique de façon plus efficace. Le meilleur exemple sont les pommes de pin.
Des cônes aérodynamiques
La question la plus importante qui mena Karl Niklas et son équipe à entreprendre des recherches sur la pollinisation par le vent était : "Comment se fait-il qu'avec le nombre impressionnant de pollens dans l'air, le pollen d'une plante n'est pas attrapé par d'autres espèces et n’atteint que d'autres plantes de sa propre espèce ?" Ce fut la question qui amena les scientifiques à étudier les plantes qui fertilisent par le vent, et en particulier les pommes de pin.
Chez les arbres qui possèdent des pommes de pin, ou "cônes", connus pour leur grande longévité et grande taille, les cônes forment les structures mâles et femelles, ces derniers peuvent se trouver sur des arbres différents ou sur le même arbre. Il existe des canaux spécialement conçus sur les cônes, permettant d'attirer les courants qui transportent le pollen qui peut atteindre facilement les zones reproductrices, grâce à ces canaux.
Les cônes femelles sont plus larges que les cônes mâles et grandissent individuellement, elles consistent en un axe central autour duquel se fixent nombreux sporophylles (des structures semblables à la feuille) et qui forment des sortes de caisses qui ressemblent à des écailles de poisson. A la base de ces écailles se développent deux ovules. Quand les cônes sont prêts à être pollinisées, ces caisses s'ouvrent sur deux côtés. De cette manière, ils permettent au pollen des cônes mâles d'entrer.

Le courant d’air créé autour de la pomme de pin femelle est très important dans la pollinisation. Le vent est dirigé vers le milieu de la pomme de pin. a) Après avoir soufflé autour du centre, il passe sur la surface des écailles. b) L’air circule de façon soudaine et irrégulière près de l’ouverture de l’œuf sur chaque écaille où le pollen se rassemble. c) Les pollens sont ensuite envoyés vers le bas, vers les écailles parallèles au vent.
En plus, des structures spéciales aident le pollen à entrer dans le cône avec facilité. Par exemple, les écailles du cône femelle sont recouvertes de poils collants. Grâce auxquelles le pollen peut facilement être ramené à l'intérieur pour la fertilisation. Après la fertilisation, les cônes femelles se transforment en structures en bois contenant une graine. Plus tard, ces graines produiront de nouvelles plantes sous des conditions adaptées. Les cônes femelles possèdent une autre propriété étonnante. La zone où l'œuf (l'ovule) se forme est très proche du centre du cône. Il est apparemment difficile que le pollen atteigne cette zone, car, pour atteindre la partie interne du cône, il doit suivre un chemin spécial qui mène au centre. Bien que cela semble être à première vue un inconvénient pour la fertilisation des cônes, des recherches ont révélé que ce n'est pas le cas.
Pour savoir comment fonctionne ce système particulier de fertilisation, une expérience a été menée en préparant un modèle de cône. Le mouvement des petits ballons remplis de l'hélium et lâchés dans l'air a été observé. On a trouvé que ces petits ballons suivent facilement les courants d'air et peuvent entrer aisément dans les corridors étroits du cône.
Plus tard, les mouvements des ballons dans cette expérience furent filmés à l'aide d'une technique photographique spéciale. Ces images furent ensuite analysées par l'ordinateur et la direction et la vitesse du vent furent établies.
Les résultats montrent que les cônes modifient le mouvement du vent selon trois manières différentes. Premièrement, la direction du vent est dirigée vers le centre grâce aux écailles, puis, le vent dans cette région est déformé et poussé vers la zone où les œufs sont formés. Dans le second mouvement, le vent, qui tourne comme un tourbillon et touche tous les petits casiers, est dirigé vers la région qui s'ouvre sur le centre du cône. Troisièmement, grâce aux protubérances qui donnent naissance à de petits courants, le cône dirige le vent vers le bas en direction des casiers.

Les pommes de pin ont des épaisseurs et des formes différentes selon leurs espèces.
Grâce à ces mouvements, la plupart du pollen dans l'air atteint la destination voulue. Le point le plus important à noter est que ces trois opérations, qui se complètent les unes les autres, doivent exister en même temps. La structure parfaite des cônes apparaît donc à ce niveau.
La théorie de l'évolution affirme qu’une phase de développement a lieu chez les plantes, comme pour tous les êtres vivants au cours du temps. Selon les évolutionnistes, la raison de la structure parfaite des plantes repose sur des coïncidences. Pour bien saisir l'absurdité de cette affirmation, il suffit d'examiner la structure parfaite du système de reproduction des cônes.
Il n'est pas possible qu'une espèce vivante se perpétue sans système reproducteur. Cette vérité inévitable s'applique aussi aux pins et à leurs cônes. En d'autres mots, le système reproducteur dans les cônes a du exister en même temps que les pins lorsqu'ils sont apparus pour la première fois. Il n'est pas possible que la structure parfaite des cônes soit apparue toute seule au cours d'une longue période de temps suivant différentes étapes. Il est primordial pour la structure qui mène le vent dans les cônes, pour l'autre structure qui dirige le vent dans les canaux, et pour les canaux qui mènent à la zone où les œufs se trouvent, d’apparaître au même moment sans qu'aucun détail ne manque. Si une de ces structures était absente, il ne serait pas possible que ce système de reproduction fonctionne. L'impossibilité que l'ovule du cône et le pollen qui le fertilisera soient apparus par hasard est un autre cul-de-sac du point de vue de la théorie de l'évolution.
Que toutes les parties d'un tel système soient apparues au même moment par coïncidences, quand il est impossible que même une seule de ces parties soit apparue par hasard, est inconcevable. Les découvertes scientifiques invalident les affirmations de la théorie de l'évolution à propos de l'émergence de la vie due au hasard. Pour cette raison, il est évident qu'à l'instant où les premiers cônes sont apparus, leur forme était parfaite et ils possédaient un système sans défaut, car ils ont été créés par Allah.
Les pins possèdent d'autres caractéristiques qui accélèrent la prise au piège des pollens. Par exemple, les cônes femelles se forment généralement au bout des branches. Cela réduit la perte de pollen au minimum.
De plus, les écailles qui recouvrent les cônes aident à ce que plus de pollen tombe sur les cônes en réduisant la vitesse des courants d'air. L'arrangement symétrique des écailles autour des cônes aide la prise au piège des pollens venant de toutes les directions.
Comme tous les pollens, les pollens de pin ont des formes, tailles et densités différentes selon leur espèce. Par exemple, le pollen d'une espèce est d'une densité qui l'empêche de suivre les courants d'air utilisés par les cônes des autres espèces. Pour cette raison, ils échappent au courant formé par le cône et tombent par terre. Toutes les variétés de cônes piègent les courants d'air les plus adaptés pour leur propre espèce de pollen. Cette caractéristique des cônes ne sert pas uniquement à piéger les pollens. Les plantes utilisent cette filtration des courants d'air pour des fonctions très variées. Par exemple, avec cette méthode, les cônes femelles sont capables de changer la direction des pollens fungus qui pourraient endommager leurs ovules.

Les feuilles du pin hybride américain sont situées pour ne pas obstruer le passage du pollen et faciliter ainsi la fertilisation.
Les précautions prises par les plantes afin que leur pollen, libéré au hasard dans l'air, puisse atteindre leur propre espèce, ne sont pas limitées. Les plantes produisent beaucoup plus de pollen que celui dont elles ont besoin afin de garantir le processus de pollinisation. Grâce à cela, la plante n'est pas affectée par les pertes de pollen qui peuvent survenir pour différentes raisons. Par exemple, chaque cône mâle sur un pin produit plus de 5 millions de grains de pollen par an, ce qui représente pour l'arbre entier une production de 12,5 milliards de grains de pollen par an, un nombre extraordinaire comparé aux autres êtres vivants.3
Même ainsi, les pollens portés par le vent rencontrent des obstacles. Les feuilles en représentent un. Quand les pollens sont libérés dans l'air, certaines plantes (noisetier, noyer etc.) ouvrent leurs fleurs avant leurs feuilles, afin que la pollinisation se fasse pendant que leurs feuilles sont toujours en développement. Les fleurs se trouvent sur trois sortes de céréales et de pins pour faciliter la pollinisation. Dans ce cas, les feuilles sont organisées de façon qui les empêche à devenir un obstacle au mouvement du pollen.
Grâce à ces arrangements préalables, les pollens peuvent parcourir des distances considérables. La distance varie selon les espèces. Par exemple, les pollens avec des sacs à air peuvent parcourir de plus grandes distances que les autres espèces. On a découvert que les pollens de pin portant deux de ces sacs à air peuvent être transportés sur 300 kilomètres par des courants d'air élevés.4 Un fait si important est que des centaines de variétés de pollen voyagent sur de telles distances dans l'air, portées par le même vent, mais sans aucune confusion entre elles.

Aucun commentaire:

Enregistrer un commentaire